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Abstract 
Identifying the most relevant factors influencing project performance is essential for implementing business 

strategies by selecting and adjusting proper improvement activities. The two major classification algorithms 

CRT and ANN that were recommended by the Auto Classifier tool in SPSS Modeler used for determining the 

most important variables (attributes) of software development in PC environment. While the accuracy of 

classification of productive versus non-productive cases are relatively close (72% vs 69%), their ranking of 

important variables are different. CRT ranks the Programming Language as the most important variable and 

Function Points as the least important. On the other hand, ANN ranks the Function Points as the most important 

followed by team size and Programming Language. 

 

I. Introduction 
Identifying the most relevant factorsin 

fluencing project performance is essential for 

implementing business strategies byselecting and 

adjusting proper improvement activities. There is, 

however, a large number of potential in fluencing 

factors. There is, however, alargenumber of 

potentialin fluencing factors. This paper proposes 

data mining approach forid entifying the 

mostrelevant factorsin fluencings of twaredev 

elopment productivity for PC platform. The method 

first determines the most efficient algorithms for 

classifying and establishing contributing factors. The 

evaluationofthe algori thms indicates adifferents 

etoffactors are relevant. Moreover, application of 

auto classification significantly improves the 

d e c i s i o n  o f  c h o o s i n g  a n  a l g o r i t h m  

interms ofaccuracyandprecision. Many software 

organizations are stillpropo singunrea listic  software 

costs, work within tight schedules, and finishtheir 

projects behind schedule and budget, or do not 

complete them at all [12]. This illustrates that 

reliable methods forman aging software 

development effort and productivity are a key issue 

in software organizations. 

One essential as pect when managing 

development ef fort and productivityisthe large 

number of associated andunknowninfluencingfactors 

o r  productivity factors[23]. Identifying the 

rightproductivityfactors increases  the effective ness 

of productivity improvement strategies by 

concentrating management activities directly 

onthose  development processes that have the 

greatest impact on productivity. On the other hand, 

focusing measurement activities on a limited 

number of the most relevant factorsre ducesthe costo 

fquantitative project management [6]. 

Software development productivity is an 

important project management concern. One study 

reports that a 20% improvement in software 

productivity will be worth $45 billion in the U.S and 

$90 billion worldwide [1].As a result, a number of 

empirical studies of software productivity have 

appeared in the literature over the past three decades. 

Scacchi has published a report that examines 

empirical investigations in relation to software 

development attributes, tools, techniques, or some 

combination of these that have a significant impact 

on productivity of software production [2].  These 

studies focus on the development of large scale 

software development. Twelve major software 

productivity measurement studies are reviewed 

including those at IBM (Albrecht [3], [4]), TRW 

(Boehm [1], [5], [6], [7]), NASA (Bailey and Basili 

[8]), ITT (Vosburg et.al [9]),and international 

projects (Lawrence [10], Cusumano and Kemerer 

[11]. In addition, Scacchi examines a number of 

other theoretical and empirical studies of 

programmer productivity, cost-benefit analysis, and 

estimation of software cost(Thadhani [12], Lambert 

[13], Cerveny and Joseph [14].   

Based on his survey, Scacchi identifies a number 

of software productivity attributes:  

1.   Computing resources and easy-to-access to 

support system specialists  

2.    Contemporary software engineering tools and 

techniques   

3. System development aids for coordinating 

software projects  

4. Programming languages  

5. Software project Complexity. indicated by size 

of source code delivered,  

6. functional coupling, and functional cohesion  

7. Reuse software that supports the information 

processing tasks required by the application  

8. Stable system requirements and specifications  
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9. Small, well-organized project teams 

10. Experienced software development staff  

However, Scacchi believes that it is not always 

possible or desirable to improve software 

productivity by cultivating the entire project 

characteristics listed above. 

Discovering factors that influence software 

development productivity and relationships among 

them is difficult and complicated. Our Objective n 

this paper is to determine factors influencing 

productivity of the software developmentin PC 

platform environment by using appropriate data 

mining algorithms.  

 

II. Productivity Measure of Software 

Development 
In general, productivity is understood as a ratio of 

outputs produced to inputs used.  However, 

researchers may use different outputs and inputs for 

measuring productivity.  IEEE Standard 1045 

calculates productivity in terms of effort as an input 

and lines of code or function points as output [16]. 

The two most common methods for measuring 

complexity or size of a software development project 

are Function Points and Lines of Code.  

The main limitation of the LOC model is that it 

depends on the accuracy of an early estimate of lines 

of code.  This estimate is usually based on the past 

experience of the systems analyst.  Certainly, most 

organizations would find it difficult, if not 

impossible, to locate experienced analysts who could 

come up with an accurate estimate of the system size 

using a LOC model [17].  A third problem with LOC 

model is that it does not take into account the 

resources available to the systems development team.  

These include among other things the types of 

language used in coding, software tools, the skills 

and experiences of the team itself [18]. 

An alternative method for estimating systems 

development effort was developed by Albrecht [3]. 

Albrecht introduced the concept of Function Points 

(FP) to measure the functional requirements of a 

proposed system.  In FP modeling the size of the 

system is determined by first identifying the type of 

each required function in terms of inputs, outputs, 

inquiries, internal files, and external interface files.  

To calculate the value of function points for each 

category, the number of functions in each category is 

multiplied by the appropriate complexity weight.  

The total systems effort is then calculated by 

multiplying the sum of function points for all 

categories by the Technical Complexity Factor 

(TCF).  The TCF is determined by assigning values 

to 14 influencing project factors and totaling them.  

Readers unfamiliar with the FP model are referred to 

Albrecht and Gaffney [4].  Albrecht argued that FP 

model makes intuitive sense to users and it would be 

easier for project managers to estimate the required 

systems effort based on either the user requirements 

specification or logical design specification [3].  

Another advantage of the FP model is that it does not 

depend on a particular language.  Therefore, project 

managers using the FP model would avoid the 

difficulties involved in adjusting the LOC counts for 

information systems developed in different 

languages. In this paper I have used the following 

equation for calculation of productivity: Productivity 

= Effort/Function Points 

 

III. Methodology 
Data Mining may be defined as the process of 

finding potentially useful patterns of information and 

relationships in data.  As the quantity of clinical data 

has accumulated, domain experts using manual 

analysis have not kept pace and have lost the ability 

to become familiar with the data in each case as the 

number of cases increases.  Improved data and 

information handling capabilities have contributed to 

the rapid development of new opportunities for 

knowledge discovery. Interdisciplinary research on 

knowledge discovery in databases has emerged in 

this decade. Data mining, as automated pattern 

recognition, is a set of methods applied to knowledge 

discovery that attempts to uncover patterns that are 

difficult to detect with traditional statistical methods. 

Patterns are evaluated for how well they hold on 

unseen cases. Databases, data warehouses, and data 

repositories are becoming ubiquitous, but the 

knowledge and skills required to capitalize on these 

collections of data are not yet widespread. In this 

research As a First step we used Auto-Classification 

tool in SPSS Modeler which applies 11 different 

algorithms shown in Figure 1. The most efficient 

algorithms with highest accuracy rates are displayed 

based on current data set used for analysis. 

 

Figure 1. Auto-Classification’s Algorithms 

 

 
The following is a brief description of the 

algorithms suggested and displayed by Auto-

Classification as the most accurate models as shown 

in Figure 2. 
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Figure 2. TheMost Efficient Algorithms 

 
 

Decision Trees- Decision trees and rule induction 

are two most commonly used approaches to 

discovering logical patterns within medical data sets. 

Decision trees may be viewed as a simplistic 

approach to rule discovery because of the process 

used to discover patterns within data sets.   

Decision tree is built through a process known 

as binary recursive partitioning. This is an iterative 

process of splitting the data into partitions, and then 

splitting it up further on each of the branches.  

Initially, you start with a training set in which the 

classification label (say, "productive" or "non-

productive") is known (pre-classified) for each 

record.  All of the records in the training set are 

together in one big box. The algorithm then 

systematically tries breaking up the records into two 

parts, examining one variable at a time and splitting 

the records on the basis of a dividing line in that 

variable (say, FP> 30 or FP<=30).  The object is to 

attain as homogeneous set of labels (say, 

"productive" or "non-productive ") as possible in 

each partition.  This splitting or partitioning is then 

applied to each of the new partitions. The process 

continues until no more useful splits can be found. 

The heart of the algorithm is the rule that determines 

the initial split rule [14]. 

The process starts with a training set consisting 

of pre-classified records. Pre-classified means that 

the target field, or dependent variable, has a known 

class or label: "productive" or "non-productive”. The 

goal is to build a tree that distinguishes among the 

classes. For simplicity, assume that there are only 

two target classes and that each split is binary 

partitioning. The splitting criterion easily generalizes 

to multiple classes, and any multi-way partitioning 

can be achieved through repeated binary splits. To 

choose the best splitter at a node, the algorithm 

considers each input field in turn.  In essence, each 

field is sorted. Then, every possible split is tried and 

considered, and the best split is the one which 

produces the largest decrease in diversity of the 

classification label within each partition. This is 

repeated for all fields, and the winner is chosen as 

the best splitter for that node.  The process is 

continued at the next node and, in this manner, a full 

tree is generated. 

 

Artificial Neural Networks (ANN) - Artificial 

neural networks are defined as information 

processing systems inspired by the structure or 

architecture of the brain (Caudill & Butler, 1990). 

They are constructed from interconnecting 

processing elements, which are analogous to 

neurons. The two main techniques employed by 

neural networks are known as supervised learning 

and unsupervised learning. In unsupervised learning, 

the neural network requires no initial information 

regarding the correct classification of the data it is 

presented with. The neural network employing 

unsupervised learning is able to analyze a multi-

dimensional data set in order to discover the natural 

clusters and sub-clusters that exist within that data. 

Neural networks using this technique are able to 

identify their own classification schemes based upon 

the structure of the data provided, thus reducing its 

dimensionality. Unsupervised pattern recognition is 

therefore sometimes called cluster analysis [3], [16], 

and [17].  

Supervised learning is essentially a two stage 

process; firstly training the neural network to 

recognize different classes of data by exposing it to a 

series of examples, and secondly, testing how well it 

has learned from these examples by supplying it with 

a previously unseen set of data. A trained neural 

network can be thought of as an "expert" in the 

category of information it has been given to analyze. 

It provides projections given new situations of 

interest and answers "what if" questions.  

There are disadvantages in using ANN.  No 

explanation of the results is given i.e. difficult for the 
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user to interpret the results. They are slow to train 

due to their iterative nature. Empirical studies have 

shown that if the data provided does not contain 

useful information within the context of the focus of 

the investigation, then the use of neural networks 

cannot generate such information any more than 

traditional analysis techniques can. However, it may 

well be the case that the use of neural networks for 

data mining allows this conclusion to be reached 

more quickly than might ordinarily be the case.  

In the last two decades, Artificial Neural 

Networks have been used for predictions in diverse 

applications.  In recent years, a number of studies 

have used neural networks in various stages of 

software development. Hakkarainen et al, estimated 

software size by training an ANN.  They used 

structured specification descriptions as input and 

Demarco Function Bang, Albrecht’s Function Points 

and Symon’s mark II Function Points size metrics as 

output.  The results of their study indicated that ANN 

could be used successfully to estimate software size 

[20]. Srinivasan and Fisher compared two 

approaches 1) a back propagation neural network and 

2) Regression Trees, using Boehm’s historical 

database. Their experiments indicated that neural 

network and regression trees are competitive with 

model-based approaches [21].  Finnie and Wittig 

applied artificial neural networks (ANN) and case-

based reasoning (CBR) to estimate software 

development effort [22]. They used a data set from 

the Australian Software Metrics Association.  ANN 

was able to estimate software development effort 

within 25% of the actual effort in more than 75% of 

the cases, and with a MAPE of less than 25%. 

Carolyn Mair et al, used 67 software projects derived 

from a Canadian software house to evaluate 

prediction performances of regression, Rule 

Induction (RI), CBR and ANN techniques [23]. The 

results of the study showed considerable variation 

between the 4 models. MAPE for RI ranged from 

86% to140%. MAPE for regression ranged from 

38% to 100%. MAPE for CBR ranged from 43% to 

80% and for ANN ranged from 21% to 66%. MAPE 

results suggest that ANN seem to be the most 

accurate and RI is the least accurate technique [23].  

Shukla conducted a large number of simulation 

experiments using genetically trained neural 

networks.  He used a merged database comprising 63 

projects, and Kemerer database comprising 15 

projects.  The results indicated a significant 

estimation improvement over Quick Propagation 

Network and Regression Trees approaches.  Shukla 

concluded that there is still a need to apply neural 

networks to diverse projects with wide range of 

attributes because it is “unclear which techniques are 

most valuable for a given problem. …, experimental 

comparison using rigorous evaluation methods is 

necessary” [24]. 

The Multilayer Perceptron (MLP) is one of the 

most widely implemented neural network topologies. 

In terms of mapping abilities, the MLP is believed to 

be capable of approximating arbitrary functions. This 

has been important in the study of nonlinear 

dynamics, and other function mapping problems. 

MLPs are normally trained with the back 

propagation algorithm. Two important characteristics 

of the Multilayer Perceptron are:  

It’s smooth nonlinear Processing Elements 

(PEs). The logistic function and the hyperbolic 

tangent are the most widely used. Their massive 

interconnectivity i.e. any element of a given layer 

feeds all the elements of the next layer.  

1. The Multilayer Perceptron is trained with 

error correction learning, which means that the 

desired response for the system must be known. 

Back propagation computes the sensitivity of a cost 

function with respect to each weight in the network, 

and updates each weight proportional to the 

sensitivity.  

 

IV. DATA 
The data used in this research project was 

collected by The International Software 

Benchmarking Standards Group (ISBSG).  The 

group gathered information from 1238 software 

projects from around the world. Projects cover a 

broad cross-section of the software industry. In 

general, they have a business focus. The projects 

come from 20 different countries. Major contributors 

are the United States (27%), Australia (25%), 

Canada (11%), United Kingdom (10%), Netherlands 

(7%), and France (7%). Major organization types are 

insurance (19%), government (12%), banking (12%), 

business services (10%), manufacturing (10%), 

communications (7%), and utilities (6%). 

Projects types include enhancement projects 

(50%), new developments (46%), and 4% are re-

developments. Application types consist of 

Management Information Systems (38%), 

transaction/production systems (36%), and Office 

Information Systems (5%). Nearly 3% are real-time 

systems. 

Over 70 programming languages are 

represented. 3GLs represent 57% of projects, 4GLs 

37%, and application generators 6%. Major 

languages are COBOL (18%), C/C++ (10%), Visual 

Basic (8%), Cobol II (8%), SQL (8%), Natural (7%), 

Oracle (7%), PL/I (6%), Access (3%), and Telon 

(3%). Platform for projects include mainframe 

projects (54%), midrange (24%), and 

microcomputers (22%). 

Sixty-two (62%) of projects use a standard 

methodology that was developed in-house), 21% use 

a purchased methodology. Only 12% do not follow a 

methodology.  The use of CASE tools ranges from 

21% of projects using upper CASE, down to 10% for 
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integrated CASE tools. CASE tools of some type are 

used in 51% of projects. Traditional system 

modelling techniques (data modelling, process 

modelling, event modelling, business area 

modelling) are used in 66% of projects. They are the 

only techniques listed in 27% of projects; 39% use a 

combination of traditional modelling and other 

techniques. The most common single technique is 

data modelling, used in 59% of projects. RAD/JAD 

techniques are used in 28% of projects. Object 

oriented techniques are used in 14% of projects. 

Prototyping is used in 29% of projects. 

Data in the ISBSG database had to be cleaned 

and pre-processed in order to get, relevant and 

complete data for analysis. Records with missing 

value of attributes were excluded and the character 

values of text attributes or variables were 

transformed to numeric values. Function points 

count, total work effort in hours, team size, 

development platform (mainframe, mid-size, PC), 

language type (3GL, 4GL, Application Generator 

etc.), whether a software development methodology 

was used, programming language and development 

type (new, enhancement, etc.) attributes were 

considered for analysis. Productivity attribute was 

calculated by dividing total work effort in hours by 

count of function points. Once the data was pre-

processed, 468 usable projects were available for 

analysis.  

 

V. Data Analysis 
In a previous study we created a pivot table that 

displayed the productivity of software development 

by platform and programming type. Table 1 and 

Figure 3 shows the results. 

 

Table 1. Pivot table for Average Productivity, Development Platform, Language Type, and Methodology 

Methodology (All) 

   

     Average of Productivity Language Type 

   Development Platform Application Generator 4GL 3GL Grand Total 

Mainframe 10.51 5.91 13.62 8.04 

Client-Server 16.18 12.39 10.65 14.19 

Micro Computer 19.19 13.77 15.07 17.78 

Grand Total 16.72 10.28 14.71 14.24 

 

Figure 3. Average Productivity, Development Platform, Language Type, and Methodology 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As the displayed information indicates, in terms 

of hours spent per function point, the Main Frame 

platform is most productive and the PC platform the 

least productive among the three platforms. This 

result is in conflict with findings of previous 

research. Therefore, the motivation for further and 

more detailed study of PC platform and determining 

which development factors are contributing or not 

contributing to productivity in PC development 

environment. 

Data in theISBSG databasehad to becleaned 

andpre-processed in order toget, relevantand 
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complete data for analysis. Records with missing 

value of attributes were excluded and the 

charactervalues oftext attributes or variables 

weretransformed to numericvalues. Function points 

count,team size, development platform (mainframe, 

mid-size, PC), languagetype(3GL,4GL,Application 

Generatoretc.), whetherasoftwaredevelopment 

methodologywas used, programminglanguage and 

development type (new, enhancement, etc.) attributes 

were considered for 

analysis.Productivityattributewas calculated 

bydividingtotal work effort in hours bycount of 

function points. Oncethe data was pre-processed, 468 

usable projects were available for analysis. 

An exploratory study was conducted using 

regression analysis on numeric productivity values. 

As the following tables indicates only the 

programming language statistically is significant (t of 

-2.717) and in an inverse relationship with 

productivity. Adjusted R
2
 is 0.047 which is really 

low and means that linear regression cannot explain 

variations in productivity. 

 

Table 2. Regression Analysis Model 

 
 

VI. Decision Tree Analysis 
Before using this algorithm data has been 

balanced and partitioned into training and testing 

samples. You can use Balance nodes to correct 

imbalances in dataset. In our dataset balancing is 

used in order to make the number of productive and 

non-productive cases close to equal. SBGI Dataset is 

partitioned into 70% for training and 30% for testing 

the models.Figure 4 shows that programming 

language is the most important variable and function 

point is the least important. While the importance of 

programming language is theoretically make sense 

and confirms the previous findings, the lack of 

importance for function points is surprising. The 

function point represents the complexity and size of a 

software project and you may expect that it should 

have a great influence on productivity of software 

development. 

 

Figure 4. Importance of variables based on CRT Analysis 

 
 

The following diagrams displays the confusion matrix, gain chart and decision tree rules created by the 

model. Both the confusion matrix and the gain chart indicates CRT as a good model with 72% accuracy. 

Figure 5. CRT Confusion Matrix 
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Figure 6. CRT Gain Chart 

 
 

Figure 7. CRT Decision Tree Rules 

 
 

VII. Artificial Neural Network Analysis 
The same balancing and partition options used for ANN analysis. A Multilayer Perceptron network was 

used for this analysis. Figure 8 shows the basic structure of this network. 

 

 

 

 

 

 

 

 

 

Figure 8. The Network Model 
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The ANN model resulted in a different ranking of important variables. Function Points is the most 

important followed by Team Size and Programming Language. This result seems to be similar to the results of 

previous results. Confusion matrix shows lower accuracy for ANN model (69%) than accuracy for CRT model 

(72%). Figure 11 represents the gain chart for ANN model. 

 

Figure 9.Importance of variables based on ANN Analysis 

 
 

Figure 10. ANN Confusion Matrix 

 
Figure 11.ANN Gain Chart 
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VIII. Conclusion 
The two major classification algorithms CRT 

and ANN that were recommended by the Auto 

Classifier tool in SPSS Modeler used for determining 

the most important variables (attributes) of software 

development in PC environment. While the accuracy 

of classification of productive versus non-productive 

cases are relatively close (72% vs 69%), their 

ranking of important variables are different. CRT 

ranks the Programming Language as the most 

important variable and Function Points as the least 

important. On the other hand, ANN ranks the 

Function Points as the most important followed by 

team size and Programming Language. 

Let us consider the results of CRT which is more 

accurate in terms of classification. In CRT model 

methodology, application type, language type, team 

size, and specially function points which represents 

the size and complexity of the software development 

are not indicated as important variable. Lack of or 

poor use methodology, which is also listed as the 

least important variable in ANN model, has clearly 

an effect on productivity of software development 

and may explain the lower productivity in PC 

platform application. However, the low importance 

of team size and function points is puzzling.  

There is a need for using a larger sample size 

and may be from different repositories to validate or 

reject the results of this study. Conducting research 

on Mainframe platform and comparing the results 

with the results of the PC platform would also clarify 

further the productivity issue. 
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